About the authors

Peter Trotman served a student apprenticeship with Bristol Aero-Engines Ltd (now Rolls-Royce Ltd), qualifying as a mechanical and structural engineer. He was involved with the provision of facilities for ground running of aero engines. Peter joined BRE in 1967 and spent five years in the Public Health Engineering Section, carrying out research into water services and drainage. He has served on BSI committees dealing with waterproofing of below-ground structures and was a founder member of the Basement Development Group. In 1975 he joined the BRE Advisory Service, and became its Head in 1990, managing programmes of site investigations, lecturing to construction professionals and preparing BRE technical publications. More recently he has become Co-ordinator for the CIB, International Council for Research and Innovation in Building and Construction, Commission W86 – Building Pathology.

Chris Sanders graduated in physics and meteorology in 1973 and worked for BRE in Scotland for 29 years, initially on the risk of condensation and mould in houses and roofs and the assessment of the effects of moulds and mites on health. He carried out the analysis of the condensation and mould data in four English House Condition Surveys. He has produced guidance documents giving advice on avoiding thermal bridging in housing and other buildings and carried out the thermal analysis of the Robust Details that were produced in association with Approved Document L1 of the English Building Regulations. He is Convenor of the CEN Working Groups developing European standards on moisture and climatic data and chairman of the BSI committee revising BS 5250, the code of practice for condensation in buildings. He was actively involved with the UK Climate Impacts Programme and the BRE programme investigating the effects of climate change on future buildings and developing cost effective measures for the repair of housing after flooding. Chris left BRE in August 2003 to become the director of the newly established Centre for Research on Indoor Climate and Health at Glasgow Caledonian University.

H W (Harry) Harrison is an architect. After short periods with a large UK building contractor and a small architectural practice, he joined BRE. He retired 34 years later as Head of Construction Practice Division. At BRE, he carried out research into many aspects of the design and specification of buildings and building components, especially of weathertightness, accuracy and jointing. He has served on British and International Standards Committees responsible for putting into practice the results of BRE and other research, and for several years was the secretary of Commission W60, the Performance Concept in Building, of the International Council for Building Research, Studies and Documentation (now the International Council for Research and Innovation in Building and Construction). He was a founder member of the International Modular Group. In later years he became a specialist in building defects, and was responsible for the Housing Defects Prevention Unit and the BRE Advisory Service. In the 1990 Queen’s Birthday Honours he was appointed a Companion of the Imperial Service Order for services to building research.
Understanding dampness
Effects, causes, diagnosis and remedies

Peter Trotman, Chris Sanders and Harry Harrison
Contents

A complete list of contents starts on page 212

Preface

- Readership vii
- Scope of the book vii
- Some important definitions viii
- Acknowledgements viii

1 Introduction

- What is dampness? 1
- Types of dampness
 - Condensation 2
 - Rain penetration 2
 - Rising damp 3
 - Construction moisture 3
 - Leaking pipes 3
 - Leaks at roofing features and abutments 3
 - Spills 4
 - Ground and surface water 4
 - Contaminating salts 4
- Where is dampness apparent? 4
- Records of dampness -related problems in buildings 5
 - BRE Advisory Service records 5
 - BRE Defects database records 6
 - House Condition Surveys 6
- Changes lifestyle and construction 10
 - Changes in domestic lifestyles 10
 - Changes in external walling practice 10
 - Changes in floor construction practice 11
 - Changes in roof construction practice 12
- Changes in levels of risk 13
- BRE publications on dampness 13

2 Visible and hidden effects of dampness

- Health effects of mould and damp 15
 - Mould problems and health 15
- Diagnosis 18
 - Surveys 18
 - Staining 18
- Visible moisture 18
 - Condensation 18
 - Rain penetration 19
 - Rising damp 19
- Mould growth 20
 - Surface moulds 20
 - Algae, lichens and mosses 21
- Toxic mould 21
 - Remedies 21
- Salts 23
 - Diagnosis 23
 - Remedies 23
- Frost 23
 - Diagnosis 23
 - Remedies 25
- Timber rot 25
 - Types of fungi 25
 - Occurrence of rot 25
Understanding dampness

3 Measuring moisture
 Instruments for measuring moisture
 Sampling
 Electricalresistance moisture meters
 Resistance gauges
 Microwave techniques
 Capacitance methods
 Physical sampling by independent cores
 Drilled samples
 Moisture contents at which action may be required
 Laboratory tests for salts
 Procedure
 Typical salts contents
 Instruments for measuring the humidity
 Thermohydrograph
 Electronic sensors
 Wet bulb and dry bulb thermometers
 Dewpoint sensors

4 Condensation
 Water vapour
 Behaviour of water vapour in the air
 Production of water vapour within buildings
 Effects of condensation
 Condensate on surfaces
 Mould growth
 Design to control condensation
 Interstitial condensation
 Effects of interstitial condensation
 Controlling interstitial condensation
 Vapour control layers
 Construction
 Joints
 Performance
 Hygroscopic materials
 Materials affected
 Reverse condensation
 Incidence of condensation
 Case studies of surface condensation
 On walls
 On windows and doors
 In roofs
 On floors
 Investigating and curing condensation
 Measuring temperature and humidity by data-loggers
 Diagnosis
 Case studies
 Condensation in a terraced bungalow with ceiling heating
 Water dripping from the ceiling in a fine-art store room
 Condensation in an infants’ school
 Condensation in steel-framed houses
5 Rain penetration
Driving rain 84
Wind-driven snow 85
Driving Rain Index 85
Protection given by overhangs 85
Rain penetration in walls 91
The mechanisms 91
Run-off 92
Solid walls 95
Masonry cavity walls 98
Panelled walls 100
Curtain walling 102
Timber frame walls 104
Survey methods 105
Diagnosis 105
Remedies – external 105
Remedies – internal 109
Workmanship 110
Damp-proof courses 111
Rain penetration at openings 116
Windows 116
The window-to-wall joint 116
Doors and thresholds 119
Rain penetration in roofs 122
Pitched tiled and slated roofs 122
Incidence of defects 127
Diagnosis 130
Other pitched roofs 130
Patent glazing 133
Flat and low pitch asphalt and bituminous felt roofs 134
Bays and porches 140
Chimneys 140
Case studies 142
Water dripping from a bakery roof 142
Rain penetration at a medieval church 144
Water ingress through a solid brick parapet 145
Rain penetration in a Victorian stately home 146

6 Rising damp and groundwater movement
The theory 150
Saturated ground 150
Soluble salts 150
Rainfall splashing 151
Diagnosis 151
Failures of existing DPCs 151
Range of possibilities 152
Using an electrical moisture meter 153
Drilled samples 154
Rising damp in walls 155
The problem 155
Earth, clay and chalk walls 155
Solid masonry walls 155
Cavity masonry walls 156
Materials for DPMs and DPCs 157
New build 158
Treatment 158
The choice of DPCs 158
Replastering as a solution 162
Dry lining 162
Understanding dampness

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring of the behaviour of a replacement DPC</td>
<td>163</td>
</tr>
<tr>
<td>Replastering following a new DPC</td>
<td>163</td>
</tr>
<tr>
<td>Impervious linings</td>
<td>164</td>
</tr>
<tr>
<td>Floors</td>
<td>164</td>
</tr>
<tr>
<td>The problem</td>
<td>164</td>
</tr>
<tr>
<td>Characteristics of failure</td>
<td>165</td>
</tr>
<tr>
<td>Sources of moisture</td>
<td>165</td>
</tr>
<tr>
<td>Excluding rising damp</td>
<td>169</td>
</tr>
<tr>
<td>Materials for DPMs</td>
<td>176</td>
</tr>
<tr>
<td>Volatile organic compounds</td>
<td>177</td>
</tr>
<tr>
<td>Waterproofness of floorings</td>
<td>179</td>
</tr>
<tr>
<td>Groundwater and basements</td>
<td>182</td>
</tr>
<tr>
<td>The problem</td>
<td>182</td>
</tr>
<tr>
<td>Level of protection required</td>
<td>183</td>
</tr>
<tr>
<td>Waterstops</td>
<td>184</td>
</tr>
<tr>
<td>Converting basements during rehabilitation</td>
<td>185</td>
</tr>
<tr>
<td>Curing dampness problems</td>
<td>186</td>
</tr>
<tr>
<td>Drained cavity</td>
<td>187</td>
</tr>
<tr>
<td>Mastic asphalt tanking</td>
<td>187</td>
</tr>
<tr>
<td>Cementitious render or compound</td>
<td>188</td>
</tr>
<tr>
<td>Self-adhesive membranes</td>
<td>188</td>
</tr>
<tr>
<td>Liquid-applied membranes</td>
<td>188</td>
</tr>
<tr>
<td>Ventilated dry lining</td>
<td>189</td>
</tr>
<tr>
<td>Partition walls</td>
<td>189</td>
</tr>
<tr>
<td>Basement ceiling level</td>
<td>189</td>
</tr>
<tr>
<td>Door thresholds</td>
<td>190</td>
</tr>
<tr>
<td>Door and window frames</td>
<td>190</td>
</tr>
<tr>
<td>Fixing services</td>
<td>190</td>
</tr>
<tr>
<td>Chimney breasts</td>
<td>190</td>
</tr>
<tr>
<td>Built-in timbers</td>
<td>190</td>
</tr>
<tr>
<td>Case studies</td>
<td>191</td>
</tr>
<tr>
<td>Dampness in internal walls in a converted stable block</td>
<td>191</td>
</tr>
<tr>
<td>Severe damp and related problems in NO-fines houses</td>
<td>192</td>
</tr>
<tr>
<td>Moisture in chipboard flooring over foamed polystyrene</td>
<td>194</td>
</tr>
<tr>
<td>Dampness from leaking pipes in commercial properties</td>
<td>196</td>
</tr>
<tr>
<td>Damp in a listed building</td>
<td>198</td>
</tr>
<tr>
<td>Soluble salts in the Tower of London</td>
<td>200</td>
</tr>
</tbody>
</table>

7 More about dampness

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction water and drying out</td>
<td>203</td>
</tr>
<tr>
<td>Entrapped water</td>
<td>203</td>
</tr>
<tr>
<td>Surface DPMs</td>
<td>205</td>
</tr>
<tr>
<td>Flooding</td>
<td>205</td>
</tr>
<tr>
<td>Immediate action</td>
<td>205</td>
</tr>
<tr>
<td>Inspections</td>
<td>207</td>
</tr>
<tr>
<td>Remedies</td>
<td>207</td>
</tr>
<tr>
<td>Spills and leaks</td>
<td>209</td>
</tr>
<tr>
<td>Contaminated materials: sources and treatment</td>
<td>210</td>
</tr>
<tr>
<td>Animal residues</td>
<td>210</td>
</tr>
<tr>
<td>Chimneys</td>
<td>210</td>
</tr>
<tr>
<td>Storage of salts</td>
<td>210</td>
</tr>
</tbody>
</table>

Complete list of contents 212

References and further reading - a complete list 215
Preface

Many years ago, before the Building Research Station was founded, the British Medical Association asked the Royal Institute of British Architects to investigate the causes of dampness in dwelling houses to help them find the reasons for the prevalence of certain diseases. The RIBA committee found that direct penetration of rain through walls and lack of a damp-proof course (DPC) accounted for nearly two-thirds of all cases; condensation contributed only 2%. The causes may have since changed in relative importance with changes in construction techniques, such as cavity walls and the tendency for houses to be better heated. Unfortunately, though, dampness is a continuing source of distress to occupants. It is possibly a source or a contributor to illness, it encourages deterioration in the building fabric, and it is involved in half of the investigations undertaken over the years by BRE.

As well as damp patches on walls, ceilings and floors, dampness can lead to blistering paint, bulging plaster, rot in building timbers, mould on surfaces and fabrics, and sulfate attack on brickwork. It can also lead to less visible problems, such as reduced effectiveness of thermal insulation or cracking in brickwork as a result of corrosion of embedded metal components. Despite all the technical advice that has been published in the past, there is still a significant set of problems. This book seeks to address them.

Readership

This book is aimed primarily at all professionals involved in the design, maintenance and management of domestic, public, commercial and industrial properties; this includes surveyors, architects, builders and facilities managers. It will also be useful to student members of these professions. Much of the text and many of the illustrations will also be of relevance to householders and other users of buildings.

Scope of the book

The emphasis of this book is on existing buildings with some coverage of the design of new build. It lists the causes of dampness in buildings and explores the consequential effects of that dampness on the fabric, the maintenance of protection against dampness, and the remedies which the detrimental results of dampness will call for.

It is illustrated with photographs of defects from the BRE Advisory Service collection and drawings of construction elements that need careful design and execution. Case studies illustrate some of the more typical problems which have been investigated as well as some interesting but informative non-typical cases, although it must be recognised that it is rare to find two cases which are identical in every detail.

Chapter 1 contains background information. Chapter 2 provides a visual indication of the most common manifestations of dampness to be seen in buildings, tabulated according to building element. When the appearance of the defect under investigation has been matched with the appropriate photograph, a key provides a link to later chapters which give explanations of the physics, further information to confirm the diagnosis, and the remedies which might be specified to put right the defect.

Although this book is mainly about existing buildings, and not specifically about the design of new buildings, it gives some design criteria so that subsequent performance of the completed building may be assessed against what was either required or intended.
Some important definitions

Condensation: the process whereby water is deposited from air containing water vapour when its temperature drops to or below the dewpoint.

Dampness: used here to cover a wide variety of phenomena relating to the unwanted presence of water or water vapour, whatever its cause.

Deliquescent substance: substance which becomes damp and finally liquifies on exposure to the atmosphere, owing to the low vapour pressure of its saturated solution.

Dewpoint temperature of the air: the temperature at which condensation of liquid water starts when air is cooled, at constant vapour pressure.

Hygroscopic substance: usually applied to solids which tend to absorb moisture from the atmosphere without actually becoming liquified.

Psychrometric: Relating to the measurement of water vapour in the air, including the use of the wet and dry bulb hygrometer.

Rain penetration of walls and roofs: results from water entering the structure to such an extent that the resulting dampness or dripping of water becomes a nuisance.

Relative humidity: the ratio, normally expressed as a percentage, of the actual amount of water vapour present to the amount that would be present if the air were saturated at the same temperature.

Reverse condensation (old term: summer condensation): interstitial condensation that can occur when moisture within a wall is driven in by solar radiation on south-facing walls.

Rising damp: normally the upward transfer of moisture in a porous material due to capillary action.

Thermal bridge (old term: cold bridge): part of a structure of lower thermal resistance which bridges adjacent parts of higher thermal resistance and which can result in localised cold surfaces on which condensation, mould growth and/or pattern staining can occur.

Vapour control layer (VCL): usually a thin sheet material with a vapour resistance greater than 200 MNs/g, used on the warm side of thermal insulation to restrict moisture which diffuses through the insulation from condensing on any colder outer surface.

Acknowledgements

Unless otherwise attributed, photographs have been provided from our own collections or from the BRE Photographic Archive, a unique collection dating from the early 1920s.

We offer our thanks to the following colleagues and former colleagues who have suggested material for this book or commented on drafts, or both:

Phil Cornish
Stephen Garvin
Colin Hunter
Tony Roberts
Charles Stirling
Tim Yates

PMT
CHS
HWH
April 2004
This chapter tells you how to assess the risk of specific designs in actual locations in the UK using the driving rain index, and deals with rain penetration in solid and cavity masonry walls, cavity wall insulation, cladding systems, DPC detailing principles and well-tried details, rain penetration of pitched and flat roofs, parapets and leaking windows.

Figure 5.1 A disfiguring deposit of carbonate from rain penetrating the sloping brickwork parapet

Figure 5.2 Although much of this results from condensation, there is also some rain penetration
There are regional construction differences throughout the UK as a result of local experience and practice as well as available materials. In more exposed locations, walls may be sand:cement rendered and slate or tile-hung in Cornwall and Scotland. Pitched roofs are given a second line of defence with a sarking material of felt or plastics. In Scotland, boarding is used as the sarking. Windows in Scotland are usually inset to give protection; other parts of the UK use a narrow sill with the window much closer to the line of the outer leaf.

DRIVING RAIN

In the Building Regulations, control of moisture is a functional requirement and the building must be designed to adequately resist such penetration – see Approved Document Part C and Part G.

An International Council for Research and Innovation in Building and Construction (CIB) Working Commission on Rain Penetration meeting in the 1950s adopted a definition of rain penetration:

By rain penetration is meant that rainwater penetrates into a wall either through the surface of the wall, or due to leakage at windows or similar installations. It is not necessary that water penetrates so far that it may be discernible on the inside of the wall. More information is in *Rain Penetration Investigations - A summary of the findings of CIB Working Commission on Rain Penetration - Oslo 1963*.

Rain penetration in modern cavity walls tends to show as a well-defined roughly circular area on internal finishes. Sometimes surface salts will define the outer limits of such wetting. If the wetting persists, most of the wall may become visibly damp. In older, solid wall buildings, wetting may not be visible because successive coats of emulsion paint or vinyl wallpaper have masked the effects. The extent of the dampness, or if dry the salts which define it, can be traced with a moisture meter.

Moisture can be deposited on external surfaces in several ways:

- Gentle rain or drizzle normally falls vertically and will accumulate on flat surfaces. Some splashing may wet adjacent surfaces.
- Driving rain, which is heavy rain blown by a strong wind on to horizontal and vertical surfaces. Water can also be blown uphill on sloping surfaces.
- Snowfall and wind-blown snowdrifts have little effect at the time but when the snow melts, it can cause severe wetting, particularly very fine snow blown into pitched roofs.
- Fog wets external surfaces but in small quantities and has little effect.
- Condensation can occur on outside surfaces in tropical climates, particularly with air-conditioned buildings. Storms in these climates are more likely to be a test of weathertightness.

Figure 5.3 Severe wetting from driving rain on an exposed wall