Rammed earth:
design and construction guidelines
Rammed earth: design and construction guidelines

Peter Walker, University of Bath
Rowland Keable, In Situ Rammed Earth Co Ltd
Joe Martin, JM Architects
Vasilios Maniatidis, University of Bath
Details of all publications from BRE Bookshop are available from:
Website: www.brebookshop.com
or
IHS Rapidoc (BRE Bookshop)
Willoughby Road
Bracknell RG12 8DW
Tel: 01344 404407
Fax: 01344 714440
email: brebookshop@ihsrapidoc.com

Published by BRE Bookshop
Index compiled by Linda Sutherland

Requests to copy any part of this publication should be made to:
BRE Bookshop
Building Research Establishment
Bucknalls Lane
Watford WD25 9XX
Tel: 01923 664761
Fax: 01923 662477
email: brebookshop@emap.com

EP 62
© Copyright P Walker, R Keable, J Martin, V Maniatidis 2005
First published 2005
ISBN 1 86081 734 3
Contents

Preface ix
Acknowledgements x

1 Introduction
 1.1 Scope of guidelines 1
 1.2 What is rammed earth? 2
 1.3 Brief history and development 3
 1.4 Advantages and limitations of rammed earth 10
 1.5 Structure of the guidelines 16

2 Preliminary design considerations 17
 2.1 Applications 17
 2.2 Influence of rammed earth on other construction activities 22
 2.3 Building control 24
 2.4 Contractual considerations 27

3 Materials for rammed earth construction 29
 3.1 Raw materials 29
 3.2 Soil characteristics 31
 3.3 Soil compaction 33
 3.4 Additives 34
 3.5 Soil selection 35
 3.6 Physical characteristics 38

4 Construction of rammed earth walls 45
 4.1 Preparation 45
 4.2 Building 51

(continued)
Contents

5 **Details for rammed earth construction** 61
 5.1 General 61
 5.2 Footings and base details 61
 5.3 Openings and supports 65
 5.4 Protection given by roofs 69
 5.5 Protective coatings 70
 5.6 Services 74
 5.7 Fixings 75
 5.8 Thermal insulation 75
 5.9 Acoustic separation 75
 5.10 Construction tolerances 78

6 **Engineering design of rammed earth walls** 79
 6.1 Design requirements 79
 6.2 Properties of rammed earth for design 79
 6.3 Simplified design for structural adequacy 81
 6.4 Deformation 84

7 **Maintenance and repair of rammed earth** 85
 7.1 Weathering and deterioration 85
 7.2 Maintenance of rammed earth walls 88
 7.3 Defects in new construction 89
 7.4 Repairs to rammed earth 93

8 **Future of rammed earth** 95

Appendices

A **Physical properties of rammed earth** 99
B **Specification for rammed earth works** 111
C **Structural wall design** 119
D **Stabilised rammed earth** 125

Contact addresses 131

Glossary 133

References 137

Bibliography 139

Index 143
Figures

1 Rammed earth wall construction at the Eden Project, Cornwall
2 Construction of a rammed earth wall
3 Rammed earth wall finish, Chapel of Reconciliation, Berlin
4 Traditional rammed earth building, Morocco
5 Seven-storey rammed earth building, Weilburg, Germany (c1820)
6 Rammed earth building, Rhone Valley, France
7 Rammed earth walling at the Alhambra, Granada, Spain
8 Victorian five-storey rammed chalk houses, Winchester, Hampshire (c1840)
9 Victorian rammed chalk building, Andover, Hampshire
10 Rammed chalk house, Amesbury, Wiltshire (c1920)
11 Eden Project Visitors Centre, Cornwall
12 AtEIC Building, Centre for Alternative Technology, Machynlleth, Powys
13 Wall at Chelsea Flower Show 2000
14 Woodley Park Sports Centre, Skelmersdale, Lancashire
15 Rammed chalk walls, Kindersley Centre, Sheepdrove Estate, Berkshire
16 Bird-in-Bush Nursery, London
17 Mount Pleasant Ecological Business Park, Porthtowan, Cornwall
18 Altar, Chapel of Reconciliation, Berlin
19 Rammed earth wall, Brandenburg, Germany
20 Rammed earth wall, Zeesen, Germany
21 Stabilised rammed earth house, Rural Studio, Alabama, USA
22 Stabilised rammed earth house, Western Australia
23 Dragons Retreat, Devon (stabilised rammed earth)
24 Jasmine Cottage, Norfolk (stabilised rammed earth)
25 Compaction layers in rammed earth
26 Tooled finish in rammed earth
27 Prefabricated rammed earth walls
28 Rammed earth floor
29 Rammed earth floor, Mount Pleasant Ecological Park, Porthtowan, Cornwall
30 Office desk, Engineers HRW office, London
31 Rammed earth wall construction under cover, Centre for Alternative Technology
32 Compaction layers in rammed earth
33 Pneumatic rammer
34 Manual rammer
35 Relationship between compaction moisture and dry density
36 Grading limits for rammed earth soils
37 Propping of walls during drying
38 Traditional timber formwork
39 Cantilevered formwork
40 Australian proprietary static formwork
41 Proprietary concrete static formwork
42 Timber formwork
43 Timber formwork for curved wall
44 Through-bolted formwork
45 Small forced-action screed mixer
46 Pan-style concrete mixer
47 Skid steer loader
48 Rotavator mixer
49 Pneumatic compaction of a stabilised rammed earth wall
50 Compaction using sheep's-foot roller
51 Movement joints
52 Protection of new works
53 Damp-proof course
54 Base details
55 Water damage at the base of a wall
56 Full-height opening between panels
57 Arched opening
58 Opening details
59 Wall plate details
60 Eaves details
61 Peeling failure of sodium silicate protective coating
62 Preferential weathering of sodium silicate treated wall, exacerbated by under compaction
63 Clay plaster, Woodley Park Sports Centre
64 Movement joints in lime render
65 Plan view of embedded electrical services
66 Back box
67 Insulation details
68 Typical vertical movement joint details
69 Limiting thickness for free-standing and supporting walls
70 Simple rules for openings in rammed earth walls
71 Surface weathering from rainfall
72 Concentrated rainwater flow damage
73 Abrasion damage to vulnerable corners in a stabilised rammed earth wall
74 Walls should be protected from other construction activities
75 Colour variation
76 Textural variation in a rammed earth panel
77 Boniness
78 Formwork patterning
79 Surface cracking
80 Patch repair
81 Plucking damage
82 Surface dusting
83 Efflorescence in a stabilised rammed earth wall
84 Genesis Project, Somerset College of Arts and Technology
85 WISE Project, Centre for Alternative Technology, Wales
A1 Shear testing of rammed earth wall panel
A2 Spray erosion test
A3 Abrasion test
C1 Dispersion of concentrated loads
D1 Brimington Bowls Club Pavilion, Chesterfield, stabilised rammed earth
D2 Stabilised rammed earth stables, Ashley, Northamptonshire
This publication is believed to be a landmark in that it represents the first guidance document for rammed earth construction published in the UK. It has been compiled as part of Partners-in-Innovation project Developing rammed earth wall construction for UK housing funded by the Department of Trade and Industry (DTI). The 30-month project has been led by the University of Bath and In Situ Rammed Earth Co Ltd, working together with Engineers HRW, JM Architects, Knauf Insulation and Mark Lovell Design Engineers as contributing industrial partners. Advisory steering group members included representatives from Bristol City Council, BRE, Day Aggregates, The Ecology Building Society, Feilden Clegg & Bradley Architects, International Heritage Conservation and Management, Grimshaw Architects, Simmonds Mills Architect-Builders and Somerset Trust for Sustainable Development.

The project has included an experimental investigation of material properties, including thermal conductivity testing, structural testing of walls and columns, a worldwide review of rammed earth construction publications and a pilot case study project. As a result we believe that these guidelines represent the current state-of-the-art best practice in rammed earth construction as applicable to the UK. We hope that they will promote and lead to a greater use of rammed earth wall construction and encourage its future development. We welcome feedback and comments for future editions. Finally, we wish to express our sincere thanks to all who have helped to make this publication a reality.

Peter Walker
Rowland Keable
Joe Martin
Vasilios Maniatidis
The authors thank the DTI Partners in Innovation scheme for supporting this project. Contributions from the following partners are gratefully acknowledged: BRE, JM Architects, Mark Lovell Design Engineers, Engineers HRW, The Ecology Building Society, Feilden Clegg & Bradley Architects, Knauf Insulation, Grimshaw Architects, International Heritage Conservation and Management, Simmonds Mills Architect-Builders, Bristol City Council, Somerset Trust for Sustainable Development, and Day Aggregates. Special thanks to the following individuals whose comments on various drafts have been extremely helpful in the compilation of the guide: Jenny Andersson, Dirk Bouwens, Dave Clark, Jörg Depta, Stephen Dobson, Matthew Hall, Toby Hodsdon, Chris Massie, Tom Morton, Gordon Pearson, Martin Rauch, Bill Swaney, Steve Vary and Colin Williams. Finally, thanks to Jon Shanks for preparing drawings. All photographs were taken by Peter Walker unless otherwise stated.
1 Introduction

1.1 Scope of guidelines

For most building designers, rammed earth walling is a novel, innovative and unfamiliar material and construction technique. These guidelines have been compiled with the specific aim of informing, developing and promoting the use of rammed earth wall construction in the UK as a high-quality and sustainable building technology for walls in housing and other low- and medium-rise buildings. Specifically, the guide seeks to encourage the greater use of rammed earth, free from additives such as cement, as an alternative, sustainable and beautiful wall building material.

These guidelines for rammed earth cover general design considerations, material properties, testing and selection, engineering design, wall construction, construction details, and maintenance and repair procedures. A glossary, reference list and bibliography are also included.

Note on stabilised rammed earth

Stabilised rammed earth is an alternative form of wall construction that uses the rammed earth technique, but includes cement, primarily as an additive to change the material’s physical characteristics. Stabilisation enhances material durability and wet strength, but at the expense of using cement, a major contributor to global CO₂ emissions. Much of the guidance given here for rammed earth construction is applicable to stabilised rammed earth as well. Where the approaches differ, in material selection for example, these variances are briefly outlined in Appendix D. Further guidance on stabilised rammed earth is also available elsewhere[1,2,3].