Rammed earth: design and construction guidelines

Peter Walker, University of Bath
Rowland Keable, In Situ Rammed Earth Co Ltd
Joe Martin, JM Architects
Vasilios Maniatidis, University of Bath
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Scope of guidelines</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>What is rammed earth?</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Brief history and development</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Advantages and limitations of rammed earth</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Structure of the guidelines</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Preliminary design considerations</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Applications</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Influence of rammed earth on other construction activities</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Building control</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Contractual considerations</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Materials for rammed earth construction</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Raw materials</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Soil characteristics</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Soil compaction</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Additives</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Soil selection</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Physical characteristics</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Construction of rammed earth walls</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Preparation</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Building</td>
<td>51</td>
</tr>
</tbody>
</table>
5 Details for rammed earth construction
 5.1 General
 5.2 Footings and base details
 5.3 Openings and supports
 5.4 Protection given by roofs
 5.5 Protective coatings
 5.6 Services
 5.7 Fixings
 5.8 Thermal insulation
 5.9 Acoustic separation
 5.10 Construction tolerances

6 Engineering design of rammed earth walls
 6.1 Design requirements
 6.2 Properties of rammed earth for design
 6.3 Simplified design for structural adequacy
 6.4 Deformation

7 Maintenance and repair of rammed earth
 7.1 Weathering and deterioration
 7.2 Maintenance of rammed earth walls
 7.3 Defects in new construction
 7.4 Repairs to rammed earth

8 Future of rammed earth

Appendices
 A Physical properties of rammed earth
 B Specification for rammed earth works
 C Structural wall design
 D Stabilised rammed earth

Contact addresses
Glossary
References
Bibliography
Index
Figures

1. Rammed earth wall construction at the Eden Project, Cornwall
2. Construction of a rammed earth wall
3. Rammed earth wall finish, Chapel of Reconciliation, Berlin
4. Traditional rammed earth building, Morocco
5. Seven-storey rammed earth building, Weilburg, Germany (c1820)
6. Rammed earth building, Rhone Valley, France
7. Rammed earth walling at the Alhambra, Granada, Spain
8. Victorian five-storey rammed chalk houses, Winchester, Hampshire (c1840)
9. Victorian rammed chalk building, Andover, Hampshire
10. Rammed chalk house, Amesbury, Wiltshire (c1920)
11. Eden Project Visitors Centre, Cornwall
12. AtEIC Building, Centre for Alternative Technology, Machynlleth, Powys
13. Wall at Chelsea Flower Show 2000
14. Woodley Park Sports Centre, Skelmersdale, Lancashire
15. Rammed chalk walls, Kindersley Centre, Sheepdrove Estate, Berkshire
17. Mount Pleasant Ecological Business Park, Porthtowan, Cornwall
18. Altar, Chapel of Reconciliation, Berlin
19. Rammed earth wall, Brandenburg, Germany
20. Rammed earth wall, Zeesen, Germany
21. Stabilised rammed earth house, Rural Studio, Alabama, USA
22. Stabilised rammed earth house, Western Australia
23. Dragons Retreat, Devon (stabilised rammed earth)
24. Jasmine Cottage, Norfolk (stabilised rammed earth)
25. Compaction layers in rammed earth
26. Tooled finish in rammed earth
27. Prefabricated rammed earth walls
28. Rammed earth floor
29. Rammed earth floor, Mount Pleasant Ecological Park, Porthtowan, Cornwall
30. Office desk, Engineers HRW office, London
31. Rammed earth wall construction under cover, Centre for Alternative Technology
32. Compaction layers in rammed earth
33. Pneumatic rammer
34. Manual rammer
35. Relationship between compaction moisture and dry density
36. Grading limits for rammed earth soils
37. Propping of walls during drying
38. Traditional timber formwork
39. Cantilevered formwork
40. Australian proprietary static formwork
41. Proprietary concrete static formwork
42. Timber formwork
43. Timber formwork for curved wall
44 Through-bolted formwork
45 Small forced-action screed mixer
46 Pan-style concrete mixer
47 Skid steer loader
48 Rotavator mixer
49 Pneumatic compaction of a stabilised rammed earth wall
50 Compaction using sheeps-foot roller
51 Movement joints
52 Protection of new works
53 Damp-proof course
54 Base details
55 Water damage at the base of a wall
56 Full-height opening between panels
57 Arched opening
58 Opening details
59 Wall plate details
60 Eaves details
61 Peeling failure of sodium silicate protective coating
62 Preferential weathering of sodium silicate treated wall, exacerbated by under compaction
63 Clay plaster, Woodley Park Sports Centre
64 Movement joints in lime render
65 Plan view of embedded electrical services
66 Back box
67 Insulation details
68 Typical vertical movement joint details
69 Limiting thickness for free-standing and supporting walls
70 Simple rules for openings in rammed earth walls
71 Surface weathering from rainfall
72 Concentrated rainwater flow damage
73 Abrasion damage to vulnerable corners in a stabilised rammed earth wall
74 Walls should be protected from other construction activities
75 Colour variation
76 Textural variation in a rammed earth panel
77 Boniness
78 Formwork patterning
79 Surface cracking
80 Patch repair
81 Plucking damage
82 Surface dusting
83 Efflorescence in a stabilised rammed earth wall
84 Genesis Project, Somerset College of Arts and Technology
85 WISE Project, Centre for Alternative Technology, Wales
A1 Shear testing of rammed earth wall panel
A2 Spray erosion test
A3 Abrasion test
C1 Dispersion of concentrated loads
D1 Brimington Bowls Club Pavilion, Chesterfield, stabilised rammed earth
D2 Stabilised rammed earth stables, Ashley, Northamptonshire
This publication is believed to be a landmark in that it represents the first guidance document for rammed earth construction published in the UK. It has been compiled as part of Partners-in-Innovation project Developing rammed earth wall construction for UK housing funded by the Department of Trade and Industry (DTI). The 30-month project has been led by the University of Bath and In Situ Rammed Earth Co Ltd, working together with Engineers HRW, JM Architects, Knauf Insulation and Mark Lovell Design Engineers as contributing industrial partners. Advisory steering group members included representatives from Bristol City Council, BRE, Day Aggregates, The Ecology Building Society, Feilden Clegg & Bradley Architects, International Heritage Conservation and Management, Grimshaw Architects, Simmonds Mills Architect-Builders and Somerset Trust for Sustainable Development.

The project has included an experimental investigation of material properties, including thermal conductivity testing, structural testing of walls and columns, a worldwide review of rammed earth construction publications and a pilot case study project. As a result we believe that these guidelines represent the current state-of-the-art best practice in rammed earth construction as applicable to the UK. We hope that they will promote and lead to a greater use of rammed earth wall construction and encourage its future development. We welcome feedback and comments for future editions. Finally, we wish to express our sincere thanks to all who have helped to make this publication a reality.

Peter Walker
Rowland Keable
Joe Martin
Vasilios Maniatidis
1 Introduction

1.1 Scope of guidelines

For most building designers, rammed earth walling is a novel, innovative and unfamiliar material and construction technique. These guidelines have been compiled with the specific aim of informing, developing and promoting the use of rammed earth wall construction in the UK as a high-quality and sustainable building technology for walls in housing and other low- and medium-rise buildings. Specifically, the guide seeks to encourage the greater use of rammed earth, free from additives such as cement, as an alternative, sustainable and beautiful wall building material.

These guidelines for rammed earth cover general design considerations, material properties, testing and selection, engineering design, wall construction, construction details, and maintenance and repair procedures. A glossary, reference list and bibliography are also included.

Note on stabilised rammed earth

Stabilised rammed earth is an alternative form of wall construction that uses the rammed earth technique, but includes cement, primarily as an additive to change the material's physical characteristics. Stabilisation enhances material durability and wet strength, but at the expense of using cement, a major contributor to global CO₂ emissions. Much of the guidance given here for rammed earth construction is applicable to stabilised rammed earth as well. Where the approaches differ, in material selection for example, these variances are briefly outlined in Appendix D. Further guidance on stabilised rammed earth is also available elsewhere[1,2,3].
1.2 What is rammed earth?

Rammed earth is a form of unbaked earthen construction used primarily to build walls. Other applications include floors, roofs and foundations. Recently it has also been used for furniture, garden ornaments and other features. Rammed earth is formed by compacting moist sub-soil inside temporary formwork (Figures 1 and 2). Loose moist soil is placed in layers 100–150 mm deep and compacted. Traditionally, manual rammers have been used for compaction but nowadays pneumatically powered dynamic rammers are commonly used. Once the soil has been adequately compacted the formwork is removed, often immediately after compaction, leaving the finished wall to dry out. Walls are typically 300–450 mm thick, but this can vary widely according to design requirements.

Rammed earth walls often exhibit a distinctive layered appearance as a result of the construction process, corresponding to the successive layers of soil compacted within the formwork (Figure 3). This attractive appearance is
2.1.5 Pre-formed rammed earth
In recent years, in line with the general move towards off-site fabrication of building elements, pre-formed or prefabricated rammed earth has developed. To date, prefabrication has been used by only a very small number of specialist overseas practitioners\(^8\), and the wider use of pre-formed rammed earth is largely unproven in the UK. Prefabrication potentially allows higher-quality factory construction of elements under sheltered conditions whilst also minimising on-site construction time. Examples to date include large wall blocks (Figure 27) as well as 100–200 mm thick cladding panels. Although costs are likely to increase, owing to transportation and lifting requirements, the use of prefabricated rammed earth is likely to increase in forthcoming years.

Figure 27 Prefabricated rammed earth walls
Openings and supports

Span up to 2 m
Minimum bearing length 300 mm

Minimum cover to reinforcing bars 50 mm

Embedded stainless steel tee section

Embedded stainless steel reinforcing bars

Figure 58 (continued) Opening details
8 Future of rammed earth

Although the combined number of UK rammed earth and stabilised rammed earth structures is presently believed to be no more than several hundred, the last decade has seen a significant renewal of interest, driven primarily by the demands for more sustainable building. Over the past 25 years a few thousand stabilised rammed earth buildings have been built in Australia.

Recent applications of rammed earth in the UK have been varied, including visitors centres, a sports hall, a business park development, a children’s nursery, a conference centre, as well as a prize-winning exhibition wall at the Chelsea Flower Show. New rammed earth projects currently under development include the Genesis Project at the Somerset College of Arts and Technology in Taunton (Figure 84), a 200-seat lecture theatre in the WISE Project at the Centre for Alternative Technology in Wales (Figure 85), and the Aykley Heads Development in County Durham.

Figure 84 Genesis Project, Somerset College of Arts and Technology