Environmental impact of metals

Kim Allbury, Owen Abbe and Jane Anderson
This work has been funded by BRE Trust. Any views expressed are not necessarily those of BRE Trust. While every effort is made to ensure the accuracy and quality of information and guidance when it is first published, BRE Trust can take no responsibility for the subsequent use of this information, nor for any errors or omissions it may contain.

The mission of BRE Trust is ‘Through education and research to promote and support excellence and innovation in the built environment for the benefit of all’. Through its research programmes the Trust aims to achieve:

- a higher quality built environment
- built facilities that offer improved functionality and value for money
- a more efficient and sustainable construction sector, with a higher level of innovative practice.

A further aim of BRE Trust is to stimulate debate on challenges and opportunities in the built environment.

BRE Trust is a company limited by guarantee, registered in England and Wales (no. 3282856) and registered as a charity in England (no. 1092193) and in Scotland (no. SC039320).

Registered Office: Bucknalls Lane, Garston, Watford, Herts WD25 9XX

BRE Trust
Garston, Watford WD25 9XX
Tel: 01923 664743
Email: secretary@bretrust.co.uk
www.bretrust.org.uk

BRE Trust and BRE publications are available from:
www.brebookshop.com
or
IHS BRE Press
Willoughby Road
Bracknell RG12 8FB
Tel: 01344 328038
Fax: 01344 328005
Email: brepress@ihs.com

Requests to copy any part of this publication should be made to the publisher:
IHS BRE Press
Garston, Watford WD25 9XX
Tel: 01923 664761
Email: brepress@ihs.com

Printed on paper sourced from responsibly managed forests

FB 57

© IHS 2013
First published 2013
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary</td>
<td>iv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Metals and The Green Guide</td>
<td>1</td>
</tr>
<tr>
<td>2 Sector overview</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Steel products</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Aluminium products</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Copper products</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Zinc products</td>
<td>4</td>
</tr>
<tr>
<td>2.5 Historical and geographical changes</td>
<td>5</td>
</tr>
<tr>
<td>3 Life cycle assessment, Environmental Profiles and The Green Guide</td>
<td>6</td>
</tr>
<tr>
<td>4 Applying the updated Environmental Profiles methodology to metals</td>
<td>7</td>
</tr>
<tr>
<td>4.1 Data sources</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Treatment of recycled inputs</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Treatment of co-products and by-products</td>
<td>7</td>
</tr>
<tr>
<td>4.4 Treatment of recycling from manufacture</td>
<td>8</td>
</tr>
<tr>
<td>4.5 Treatment of recycling from end of life</td>
<td>8</td>
</tr>
<tr>
<td>4.6 Treatment of minerals extraction</td>
<td>8</td>
</tr>
<tr>
<td>4.7 Responsible sourcing</td>
<td>9</td>
</tr>
<tr>
<td>4.8 Treatment of toxicity</td>
<td>9</td>
</tr>
<tr>
<td>4.9 Treatment of coatings and finishes</td>
<td>10</td>
</tr>
<tr>
<td>4.10 Treatment of site wastage rates</td>
<td>10</td>
</tr>
<tr>
<td>4.11 Durability and service life</td>
<td>10</td>
</tr>
<tr>
<td>4.12 Functional units: structural aspects</td>
<td>10</td>
</tr>
<tr>
<td>5 Key impacts for the sector</td>
<td>13</td>
</tr>
<tr>
<td>6 Key opportunities for the sector</td>
<td>14</td>
</tr>
<tr>
<td>7 Where more data are required</td>
<td>14</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>15</td>
</tr>
<tr>
<td>9 References</td>
<td>15</td>
</tr>
</tbody>
</table>
Glossary

Allocation: sharing the input or output flows of a unit process to the product system under study. This may need to be done where a manufacturing process results in products and co-products, e.g., steel and slag.

Ecopoints: (as used in the BRE Environmental Profiles methodology) the normalised profile values are multiplied by weighting factors developed for each impact category and the results summed to give a single figure.

Environmental impact category: environmental issue being examined, e.g., climate change, acid deposition and human toxicity to air.

Environmental Profile: the level of impact in each environmental impact category for the functional unit or product being studied.

Functional unit: a qualitative description of function specifically defined for the product/service under study and any alternative products/services to which it is compared. The use of a functional unit means that the alternative designs under study are, in theory, compared fairly. For example, a comparison of external walls may be based on every external wall design in the study achieving a U-value of 0.3 W/m²K and compliance with building regulations.

Input: material or energy that enters a unit process (can include raw materials and intermediate products).

Intermediate product: material that has already been processed before being used to produce a product.

Life cycle: consecutive and interlinked stages of a product system from raw material acquisition or generation of natural resources to the final disposal.

Life cycle assessment (LCA): compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle.

Normalised profile: The characterised profile is referenced to the environmental impact for each category at the national or global level in one year (usually for one citizen), giving a ‘normalised’ profile; the values are directly comparable.

Output: material or energy that leaves a unit process (may include raw materials, intermediate products, products, emissions and waste).

Raw material: unprocessed material that is used to produce a product.
1 Introduction

This report provides a review of how metals have been assessed within The Green Guide to Specification\(^1\), including the application of the Environmental Profiles methodology\(^2\), which underlies The Green Guide. It aims to provide manufacturers and specifiers with a general understanding of the approach and decisions that have been made when applying the Environmental Profiles methodology to metals. The key impacts of metals over their whole life cycle are discussed and opportunities for improvements within the sector are identified.

This report has been produced as part of a series on the production of The Green Guide to Specification. Many of the other reports in the series that focus on specific materials, and provide more specific information in each case, may also be of value when considering the environmental impact of specific metals and their uses.

1.1 Metals and The Green Guide

Metals are an important material for construction, providing both structural and non-structural functions within the building fabric.

They are required as structural frames in various element specifications, including in walls, flooring/decking and roofs. Decisions such as metal type, profile and surface finish, dimensions and quantity of the metals are made by designers and specifiers based on the intended purpose.

In cases where the metal also fulfils aesthetic functions, eg within roof and wall cladding systems, the surface finish can also be of particular significance, as well as the service life of the element. These details are linked to requirements like visual appearance over time subject to the elements (rain, sunshine, cold and wind) and other requirements like heat and sound insulation.

In The Green Guide to Specification, 4th edition, therefore, metals are assessed as integral members of building elements over the 60-year study periods, and the impacts dating back to the mineral extraction through to manufacture, use and end of life are taken into consideration within the context of the overall environmental impact of the respective elements.
Other reports from BRE Trust

Subsidence damage to domestic buildings: lessons learned and questions remaining. FB 1
Potential implications of climate change in the built environment. FB 2
Behaviour of concrete repair patches under propped and unpropped conditions: critical review of current knowledge and practices. FB 3
Construction site security and safety: the forgotten costs! FB 4
New fire design method for steel frames with composite floor slabs. FB 5
Lessons from UK PFI and real estate partnerships: drivers, barriers and critical success factors. FB 6
An audit of UK social housing innovation. FB 7
Effective use of fibre reinforced polymer materials in construction. FB 8
Summertime solar performance of windows with shading devices. FB 9
Putting a price on sustainability. BRE Centre for Sustainable Construction and Cyril Sweett. FB 10
Modern methods of house construction: a surveyor's guide. FB 11
Crime opportunity profiling of streets (COPS): a quick crime analysis–rapid implementation approach. FB 12
Subsidence damage to domestic buildings: a guide to good technical practice. FB 13
Sustainable refurbishment of Victorian housing: guidance, assessment method and case studies. FB 14
Putting a price on sustainable schools. FB 15
Knock it down or do it up? FB 16
Micro-wind turbines in urban environments: an assessment. FB 17
Siting micro-wind turbines on house roofs. FB 18
Automatic fire sprinkler systems: a guide to good practice. FB 19
Complying with the Code for Sustainable Homes: lessons learnt on the BRE Innovation Park. FB 20
The move to low-carbon design: are designers taking the needs of building users into account? FB 21
Building-mounted micro-wind turbines on high-rise and commercial buildings. FB 22
The real cost of poor housing. FB 23
A guide to the Simplified Building Energy Model (SBEM): what it does and how it works. FB 24
Vacant dwellings in England: the challenges and costs of bringing them back into use. FB 25
Energy efficiency in new and existing buildings: comparative costs and CO₂ savings. FB 26
Health and productivity benefits of sustainable schools: a review. FB 27
Integrating BREEAM throughout the design process: a guide to achieving higher BREEAM and Code for Sustainable Homes ratings through incorporation with the RIBA Outline Plan of Work and other procurement routes. FB 28
Design fires for use in fire safety engineering. FB 29
Ventilation for healthy buildings: reducing the impact of urban pollution. FB 30
Financing UK carbon reduction projects. FB 31
The cost of poor housing in Wales. FB 32
Dynamic comfort criteria for structures: a review of UK standards, codes and advisory documents. FB 33
Water mist fire protection in offices: experimental testing and development of a test protocol. FB 34
Airtightness in commercial and public buildings. 3rd edn. FB 35
Biomass energy. FB 36
Environmental impact of insulation. FB 37
Environmental impact of vertical cladding. FB 38
Environmental impact of floor finishes: incorporating The Green Guide ratings for floor finishes. FB 39
LED lighting. FB 40
Radon in the workplace. 2nd edn. FB 41
U-value conventions in practice. FB 42
Lessons learned from community-based microgeneration projects: the impact of renewable energy capital grant schemes. FB 43
Energy management in the built environment: a review of best practice. FB 44
The cost of poor housing in Northern Ireland. FB 45
Ninety years of housing, 1921–2011. FB 46
BREEAM and the Code for Sustainable Homes on the London 2012 Olympic Park. FB 47
Saving money, resources and carbon through SMARTWaste. FB 48
Concrete usage in the London 2012 Olympic Park and the Olympic and Paralympic Village and its embodied carbon content. FB 49
A guide to the use of urban timber. FB 50
Low flow water fittings: will people accept them? FB 51
Evacuating vulnerable and dependent people from buildings in an emergency. FB 52
Refurbishing stairs in dwellings to reduce the risk of falls and injuries. FB 53
Dealing with difficult demolition wastes: a guide. FB 54
Security glazing: is it all that it’s cracked up to be? FB 55
The essential guide to retail lighting. FB 56
Environmental impact of brick, stone and concrete. FB 58