Lighting and health

Cosmin Ticleanu, Stephanie King, Paul Littlefair and Gareth Howlett, BRE, Feride Şener Yılmaz, Istanbul Technical University, and Marielle Aarts and Jüliette van Duijnhoven, Eindhoven University of Technology
Lighting and health

Cosmin Ticleanu, Stephanie King, Paul Littlefair and Gareth Howlett, BRE, Feride Şener Yilmaz, Istanbul Technical University, and Marielle Aarts and Jüliette van Duijnhoven, Eindhoven University of Technology
Contents

Acronyms iv

Executive summary v

1 Safe, healthy lighting for tasks 1
 1.1 Introduction 1
 1.2 How much lighting is needed to carry out tasks safely? 1
 1.3 Does glaring lighting pose health risks? 3
 1.4 Can the flicker from artificial lighting have a bad effect on people? 6
 1.5 Do lighting controls have health implications? 9

2 Circadian and seasonal rhythms 10
 2.1 Does exposure to lighting alter the body clock? 10
 2.2 Can LEDs keep you awake at night and damage your brain? 12
 2.3 Can fluorescent lighting cause breast cancer? 14
 2.4 Can exposure to bright light or daylight cure Seasonal Affective Disorder? 17
 2.5 Can special lighting help people with dementia? 18

3 Optical hazards 23
 3.1 Can LEDs and Compact Fluorescent Lamps damage your eyes? 23

4 Light exposure to skin 25
 4.1 Can fluorescent lighting cause skin cancer? 25
 4.2 Is any exposure to sunlight harmful? Or are there benefits from moderate exposure? 25

5 Indirect impacts 28
 5.1 Can the electric fields from lighting damage your health? 28
 5.2 What are the health risks from the mercury in fluorescent lamps? 29
 5.3 Do LEDs contain toxic chemicals? 32

6 Special types of lighting 36
 6.1 Does daylight have special health benefits compared to electric lighting? 36
 6.2 Does full spectrum lighting bring health benefits? 38
 6.3 Is polarised lighting good for you? 38

7 Recommendations 40
 7.1 Recommendations for designers 40
 7.2 Recommendations for building managers and occupants 40
 7.3 Special recommendations for elderly or visually impaired people 40

8 References 42

9 Further reading 51
This report reviews the ways in which lighting can affect the health of people in buildings. It is important for designers and building owners and occupiers to be aware of these issues. A substantial amount of research has been recently carried out in this area, and this report reviews this work.

Adequate lighting and lighting controls, including the provision of emergency lighting, are essential to enable people to work and move around a building or external site safely. Poor lighting, particularly lighting that causes glare, can give visual discomfort which may result in sore eyes, headaches, and aches and pains associated with poor body posture. These issues can be avoided by careful lighting design that meets the recommendations of codes and standards.

Fluorescent lighting with magnetic ballasts and some Light-Emitting Diodes (LEDs) can exhibit mains flicker, which can cause headaches, eyestrain or epileptic seizures in some people and exacerbate the symptoms of autism and agoraphobia. Switching to high frequency fluorescent lighting, or different types of LED driver, avoids these problems.

Exposure to light during the day enables synchronisation of the body clock, promoting alertness during the day and sleep at night time. Conversely light at night can alter the body clock, keeping you awake at night and making you sleepier during the day. Any type of lighting can do this if it is bright enough, but sources rich in blue light, such as daylight, LEDs and some fluorescent lamps, are the most effective at altering the body clock. Frequent changes to the body clock, eg in variable shift schedules or time zone changes, are associated with a range of health issues including some cancers.

Seasonal Affective Disorder (SAD) is an illness which causes depression in winter at high latitudes when there is less daylight. Exposure to bright light can alleviate the symptoms of SAD. It can also help those suffering from dementia to maintain their body clocks and sleep better at night.

Very bright light can damage the eyes. Most conventional lighting, including fluorescent lighting, is not bright enough to cause eye damage. However some very bright LEDs, particularly blue LEDs, may cause retinal damage if viewed directly. They should be screened from direct view while in use.

Exposure to ultra violet (UV) radiation can cause skin cancer. Compared to sunlight, fluorescent light contains little UV radiation. However, an unprotected lamp, particularly a Compact Fluorescent Lamp (CFL) with a faulty phosphor coating, may emit some UV radiation. To be on the safe side, desk lamps which might be close to a user for a long period should either have a protective transparent cover to the lamp, or use LED lamps which emit little or no UV radiation.

UV radiation does have a health benefit in that it allows the synthesis of Vitamin D in the body. Sunlight exposure outdoors is necessary for this to happen, because window glass blocks nearly all UV radiation. Vitamin D is essential for healthy bones, and may have a beneficial effect on the cardiovascular system and on mood and depression.

Daylight provision in general has been linked to health benefits in a number of studies. Providing daylight in buildings is often a convenient way to achieve the benefits of daytime light in regulating circadian rhythms, resulting in improved health and mood. In principle bright artificial light could give similar benefits. However, daylight provision also provides some contact with the outside, which can additionally improve health and mood.

Full spectrum lighting is sometimes claimed to have special health benefits because its spectrum is similar to daylight. However, such benefits have not been proved. Full spectrum lighting contains a lot of blue light, and exposure during the day may help people reset their body clocks, but exposure in the evening or at night might be counterproductive.

Conventional lighting does not appear to generate electric or magnetic fields that can damage human health.

Fluorescent lamps and other gas discharge lamps contain mercury. Intact lamps do not release mercury but health risks to consumers can arise from accidental lamp breakage. It is important that broken lamps are disposed of safely, and lamps are processed at the end of life to recover the mercury. LED lamps currently available on the market should not contain chemicals above human toxicity levels.

The report concludes with guidance for lighting designers and building occupiers and their managers, to maximise the health benefits of lighting and minimise health risks.

Acknowledgements

This report was produced with the support of BRE Trust as part of its research programme. The authors would also like to thank Professor John Barbur, Applied Vision Research Centre, City University and Dr Benita Middleton, Faculty of Health and Medical Sciences, University of Surrey, who gave presentations to a lighting and health workshop held at BRE, and to all the participants at the workshop who gave expert views on the subject.
Can LEDs keep you awake at night and damage your brain? Can special lighting help people with dementia? This publication reviews existing research on the health effects of lighting (including daylighting) typically found in buildings. It explains medical and psychological research in a clear and accessible way.

Related titles from IHS BRE Press

The essential guide to retail lighting
FB 56

LED lighting: A review of the current market and future developments
FB 40

Selecting lighting controls
DG 498

People-friendly lighting controls
IP 4/14

Specifying LED lighting
IP 15/10

Available from www.brebookshop.com