Structural and geotechnical design of modular geocellular drainage systems

A S O’Brien, Y S Hsu, C R Lile, S W Pye
of Mott MacDonald
Structural and geotechnical design of modular geocellular drainage systems

O’Brien, A S, Hsu, Y S, Lile, C R, Pye, S W

CIRIA

British Library Cataloguing in Publication Data

A catalogue record is available for this book from the British Library.

Keywords
Urban drainage geocellular units, stormwater attenuation tanks, infiltration tanks and rain water harvesting, building technology, climate change, concrete and structures, flooding, ground engineering, sustainable construction, underground construction, water infrastructure

Reader interest
SuDS, surface water management, development in the provision and maintenance of surface water drainage to new and existing developments

Classification
Availability Unrestricted
Content Instruction manual, recommendations
Status Established knowledge
Users Developers, contractors, consulting engineers, landscape architects, architects, local authorities, highway authorities, sewerage undertakers, drainage product manufacturers, environmental regulators, planners, sewerage undertakers, contractors and other organisations involved in the provision or maintenance of surface water drainage to new and existing developments

Published by CIRIA, Griffin Court, 15 Long Lane, London, EC1A 9PN, UK.

This publication is designed to provide accurate and authoritative information on the subject matter covered. It is sold and/or distributed with the understanding that neither the authors nor the publisher is thereby engaged in rendering a specific legal or any other professional service. While every effort has been made to ensure the accuracy and completeness of the publication, no warranty or fitness is provided or implied, and the authors and publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damage arising from its use.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, including photocopying and recording, without the written permission of the copyright holder, application for which should be addressed to the publisher. Such written permission must also be obtained before any part of this publication is stored in a retrieval system of any nature.

If you would like to reproduce any of the figures, text or technical information from this or any other CIRIA publication for use in other documents or publications, please contact the Publishing Department for more details on copyright terms and charges at: publishing@ciria.org, Tel: 020 7549 3300.
Summary

Stormwater attenuation and infiltration tanks constructed using modular plastic geocellular units are commonly used as part of sustainable drainage and rainwater harvesting systems. These plastic products have proven to be an effective solution for many projects and as a result of this success the scale of applications has dramatically increased in recent years. Because of their size and below ground location many geocellular unit installations are now significant geotechnical and structural engineering designs with potentially severe consequences if failure occurs.

This guide discusses the different types of geocellular unit available and provides guidance on: the testing that should be carried out to determine their strength and deformation characteristics; the geotechnical and structural design and behaviour of the units and assemblages, practical issues affecting installation and construction works, maintenance of the installations. Recommendations for the design methodology to be followed are included, together with worked examples, which is consistent with the requirements of the Eurocodes.

The concept of a classification system for geocellular unit installations is introduced. The objectives for which allow all parties to understand the degree of complexity of the installation, and also the appropriate level of checking and structural and geotechnical competence needed to ensure safe and efficient design.
Executive summary

Stormwater attenuation and infiltration tanks constructed using modular plastic geocellular units are commonly used as part of rainwater harvesting and sustainable drainage systems (SuDS). These plastic products have proven to be an effective solution for many projects and as a result of this success, the scale of applications has dramatically increased in recent years. Due to their size and location many geocellular unit installations are now significant structural engineering designs with potentially severe consequences if failure occurs. The level of rigour in analysis, testing, design and construction needs to be commensurate with the specific application.

This guide discusses the different types of unit available and provides guidance on the geotechnical and structural behaviour of geocellular units. Recommendations for the design methodology to be followed are included, which is consistent with the requirements of the Eurocodes. The concept of a classification system for geocellular unit installations is introduced. This classification system allows all parties to understand the degree of complexity of the installation, and also the appropriate level of checking and structural and geotechnical competence needed to ensure safe and efficient design.

Detailed guidance is provided on the testing that should be carried out to determine the strength and deformation characteristics of the geocellular units. Previously there has been an over-reliance on short-term compression tests. The actual long-term strength of the units is dependent on how the test is carried out and on the duration of loading. There needs to be a change in testing practice towards more long-term testing and towards test methods that provide more relevant data for design. It is important that there is a commonly accepted and consistent testing regime that enables different products to be directly compared. A framework for this long-term testing is provided, including a methodology to derive an appropriate design strength for a particular application.

The buried units interact with the ground, and the pressures applied to the units are sensitive to the nature of the ground and groundwater regime at a site. Guidance is provided on simple design methods and on the situations where more sophisticated geotechnical analysis may be necessary.

A discussion on the practical issues that should be considered in construction and maintenance of geocellular unit installations is included. In particular, consideration should be given to how construction activities either for the geocellular installation itself or for adjacent works may affect the geocellular unit performance. The large majority of the documented failures of such systems have been as a result of poorly controlled construction processes. Improvements to procurement practice are given. Finally, the guide recommends further areas of research to better understand the behaviour of buried geocellular units by carrying out well-instrumented large-scale in situ tests and for these tests to be back-analysed by calibrated non-linear numerical modelling.
Acknowledgements

This guide has been produced by CIRIA as a result of Research Project 962 (RP962). The original research work leading to this guide was carried out by Steve Wilson, The Environmental Protection Group Ltd, author of the original CIRIA guide C680 Structural design of modular geocellular drainage tanks published in 2008. This new guide supersedes the original publication C680.

Authors

Tony O’Brien BSc MSc DIC CEng FICE
Tony is a director of Mott MacDonald Ltd and a visiting Professor at Southampton University. He has a broad range of geotechnical engineering experience, gained on major projects in the UK, North America, Southeast Asia and the Middle East. Tony has contributed to several design guides, and was the lead author for the ICE Manual of Geotechnical Engineering’s section on Foundation Design. He was also the lead for this CIRIA publication. Tony is the geotechnics practice leader at Mott MacDonald, and professional excellence director at the Transportation Unit.

Yu Sheng Hsu PhD BEng ACGI CEng MICE
Yu Sheng is a senior principal engineer within Mott MacDonald’s foundations and geotechnical engineering team. He has almost 20 years’ experience in the application of advanced soil characterisation, numerical modelling and empirical ground movement prediction techniques for the design and construction of shallow and deep foundations, underground excavations and impact studies of new build adjacent to existing structures. He has led and worked on exemplar projects excelling in the numerical modeling of soil-structure interaction behaviours with significant technical input in UK and international projects.

Chris Lile BEng CEng MICE
Chris is senior project manager with Mott MacDonald at Crossrail and is a chartered engineer with 30 years’ professional experience in international civil and geotechnical engineering on major transportation, tunnelling, building and water engineering projects. He has worked in Europe and Asia undertaking the roles of senior project manager, design team leader and resident engineer. Chris has specialist expertise in investigative techniques, piling engineering, slope classification and assessment and heavy civils. He has 10 years’ experience working within the insurance industry on structural and ground-related claims investigation and resolution.

Sarah Pye MEng MA(Cantab) CEng MICE
Sarah is a chartered principal engineer within Mott MacDonald’s foundations and geotechnical engineering team. She was a co-author of this guidance and co-ordinated and managed inputs from the various contributors and advisers. Sarah has over 10 years’ experience in ground engineering encompassing the design and construction supervision of foundations, retaining structures, slope stabilisation and ground treatment measures for major UK and international transportation infrastructure projects.
Project steering group (PSG)

Steve Betteridge Lincolnshire County Council
Brian Chamberlain British Board of Agreement
Tim Chapman (chairman) Arup
Andrew Collier Sustainable Drainage Systems Ltd
Nick Cooper Atlas Dynamics (EU/GCC)
Dr John Duncan Lacerta Technology
Dave Fozzard Hewitech UK
Raphael Lung Highways England
Dr Tony Maxwell National Physical Laboratory
Paul Nowak Atkins Ltd
Don Ridgers Independent consultant (formerly of Thames Water Utilities Ltd)
Dan Samaila WSP (formerly of RSK Group)
Santi Santhalingam Highways England (drainage)
David Sibbitt Independent consultant (formerly of ASDA Stores)
Phil Tomlinson Permavoid
Mark Welsh Lincolnshire County Council
Richard Whiteley GHD Livigunn (formerly of Yorkshire Water and Kelda Water)
Steve Wilson Environmental Protection Group Ltd
Phil Williams ESS
Industry members British Plastics Federation – Pipes Group
ACO Technologies PLC

Other contributors

The British Plastics Federation – Pipes Group and ACO Technologies PLC provided considerable input and support for the guide. While it is CIRIA policy to acknowledge both the individual's contribution as well as their respective organisations, on this occasion CIRIA has ceded to their request that they are recognised through their industry organisations and companies.

Other consultees, contributors and PSG attendees

Patrick Cullen Sustainable Drainage Systems Ltd
Professor Dr Nigel Jennett Coventry University (formerly of National Physical Laboratory)
Dr Frederick Levy Mott MacDonald
Dr Lian Liu Mott MacDonald
Dr Juergen Maltzahn Hewitech GMBH & Co
Brian Smith Yorkshire Water

Funders

ACO Technologies PLC SEL Environmental
Sustainable Drainage Systems Ltd Aggregate Industries
British Plastics Federation – Pipes Group Thames Water Utilities Ltd
Alderburgh Ltd Yorkshire Water
RSK LDE Ltd Highways England
Permavoid Ltd Hewitech GMBH & Co.KG

CIRIA project team

Project director Chris Chiverrell
Project manager Victor Zasadzki
Contents

Summary .. iii
Executive summary .. iv
Acknowledgements .. v
Glossary .. xi
Abbreviations and acronyms .. xiv

1 Introduction ... 1
 1.1 Background .. 1
 1.1.1 Scope for new guidance .. 1
 1.1.2 SUDS development and attenuation/infiltration tanks 2
 1.2 Geocellular units and design practice .. 1
 1.3 Project experience .. 4
 1.4 The importance of appropriate structural design .. 5
 1.5 Concept of geocellular tank classification .. 6
 1.6 Design management .. 6
 1.7 Interim guidance ... 7
 1.8 Layout of the guide ... 8

2 Geocellular structures .. 10
 2.1 Introduction .. 10
 2.2 Raw material .. 11
 2.2.1 Polypropylene .. 11
 2.2.2 Polyvinyl chloride .. 12
 2.2.3 High density polyethylene ... 12
 2.2.4 Changes in blend of plastic for unit manufacture 12
 2.2.5 Mechanical properties of plastics ... 13
 2.3 Geocellular unit types (structural frame) .. 14
 2.3.1 Injection moulded with internal columns 14
 2.3.2 Honeycomb structures .. 15
 2.3.3 Plate structures .. 16
 2.3.4 Plastic profiled sheet structures ... 16
 2.3.5 Other types of unit ... 17
 2.3.6 Quality and consistency of material and manufacture 18
 2.3.7 Practical implications ... 19
 2.3.7.1 General ... 19
 2.3.7.2 Loading direction .. 19
 2.3.7.3 Rate of loading and boundary conditions 20
 2.3.7.4 Internal connection details and structural configuration of units (impact of
different load types – compression, bending, shear) 21
 2.3.7.5 Contaminated ground ... 23
 2.3.8 Stress-strain behaviour of plastics ... 23
 2.3.8.1 Elasticity, viscosity and plasticity .. 23
 2.3.8.2 Failure mechanism .. 24
 2.3.8.3 Creep and creep rupture ... 25
 2.3.8.4 Fatigue failure .. 27
 2.4 Overall structural behaviour of tanks, as an assembly of units 30
 2.5 Lessons learnt and recent developments ... 33
 2.5.1 Feedback and lessons learnt from observed performance 33
2.5.2 Development of international codes and standards .. 36
2.6 Earth pressures and ground-structure interaction... 37
 2.6.1 Earth pressures ... 37
 2.6.2 An introduction to numerical modelling .. 40
3 Site classification methodology ... 43
 3.1 Introduction ... 43
 3.2 Specific objectives. ... 43
 3.3 Construction (Design and Management) (CDM) Regulations (2015) 44
 3.4 Definition of zone of influence .. 44
 3.5 Background information ... 46
 3.6 Installation location and depth ... 46
 3.7 Construction phase ... 46
 3.8 Classification categories. .. 47
 3.8.1 Classification scoring system ... 47
 3.8.2 Design check requirements ... 48
 3.9 Classification and check proforma ... 49
 3.9.1 Check proforma methodology ... 49
 3.9.2 Key role evaluation forms ... 50
 3.9.2.1 Designer evaluation form ... 50
 3.9.2.2 Product evaluation form ... 50
 3.9.2.3 Contractor evaluation form .. 50
 3.9.3 Project roles sign off proforma ... 50
4 Load testing of units ... 51
 4.1 Load testing of geocellular units .. 51
 4.1.1 Tests for different design classifications .. 51
 4.1.2 Loading direction ... 54
 4.1.3 Load tests ... 54
 4.1.3.1 General requirements ... 54
 4.1.3.2 Rate of loading .. 55
 4.1.3.3 Temperature .. 55
 4.1.3.4 Calibration ... 56
 4.1.3.5 Geometry/rigidity of applied loads ... 57
 4.1.3.6 Confined/unconfined conditions ... 57
 4.2 Derivation of unit strength ... 58
 4.2.1 Definition of ultimate strengths ... 59
 4.2.1.1 Quick compression test, full width platen 59
 4.2.1.2 Creep rupture test ... 60
 4.2.2 Design strength ... 62
 4.3 Deformation of geocellular units ... 64
 4.3.2 Deformation under permanent loads ... 64
 4.3.3 Deformation under live loads ... 65
5 Geotechnical and structural design ... 68
 5.1 Introduction ... 68
 5.2 Design management. ... 68
 5.2.1 Single point design responsibility ... 68
 5.2.2 Information requirements ... 72
 5.2.3 Site-specific analysis .. 73
 5.2.4 Specification of unit properties, certification, testing and supervision 73
 5.2.5 Field supervision .. 73
 5.2.6 As-built information and maintenance .. 74
 5.3 Design methodology .. 74
 5.3.1 Introduction to Eurocodes .. 74
 5.3.2 Design strength of units .. 76
Figure 5.20 Relationship between resilient modulus and CBR for some typical UK soils 107
Figure 5.21 Influence of water table on subgrade stiffness 108
Figure 6.1 Typical relationship of procurement parties/stakeholders 112
Figure 7.1 Installation of geocellular units .. 117
Figure 7.2 Damage to units dropped onto a concrete surface (a) general mishandling (b) 118
Figure 7.3 Welding of geomembrane .. 118
Figure 7.4 Placement of geotextile ... 119
Figure 7.5 Temporary stockpiles, materials storage and plant operation adjacent to exposed geocellular units .. 121
Figure 7.6 Base preparation .. 122
Figure 7.7 Unsuitable base conditions, with uneven base and ingress of groundwater 123
Figure 7.8 Plant running over a geocellular tank .. 124
Figure 7.9 Benched excavation and geocellular tank construction 125
Figure 7.10 Floatation of geocellular units due to water entering the excavation 126
Figure 7.11 Groundwater control should continue until units have sufficient backfill to resist flotation 126
Figure 8.1 Plan of geocellular unit installations showing sediment tunnel (a) and sediment forebay (b) 132
Figure 8.2 Creation of a silt tunnel .. 132
Figure 8.3 Plan of geocellular installations showing an offline solution 132
Figure 8.4 Typical geocellular tank layout with inspection chambers/sediment catchpits details 133
Figure 8.5 Inspection tunnel .. 133

Tables
Table 2.1 Mechanical properties of some polymers ... 13
Table 2.2 Examples of material properties tested during manufacture for injection moulded polypropylene . 19
Table 2.3 International codes, available or under development 36
Table 2.4 Selected French and Japanese code requirements for geocellular units 37
Table 2.5 Numerical modelling: some questions to consider 41
Table 3.1 Responsibilities and legal duties ... 44
Table 3.2 Classification system for geocellular tanks, with recommended actions/roles 48
Table 3.3 Classification and recommended checks ... 49
Table 4.1 Summary of laboratory test methods for Class 1 and 2 installations 52
Table 4.2 Summary of various specialist laboratory test methods for geocellular units, Class 2 or 3 installations .. 54
Table 4.3 Recommended load test specification – general requirements 55
Table 4.4 Recommended requirements for reporting of load tests 57
Table 4.5 Suggested suite of tests to determine long-term strength 62
Table 4.6 Classification system for geocellular tanks, examples and design requirements 71
Table 4.7 Partial factor on geocellular unit strength, factors to be considered 77
Table 4.8 Examples of partial factor on geocellular unit characteristic strength 78
Table 4.9 Unit weights of soils ... 80
Table 4.10 Critical state angle of friction, ϕ', for some sands and gravels; ϕ', rounded down to nearest degree .. 81
Table 4.11 Characteristic traffic loads for different site uses, permanent works 85
Table 4.12 Weight density of some construction materials 86
Table 4.13 Checklist for construction plant loading information 87
Table 4.14 Load factors for ultimate and serviceability limit state checks 99
Table 4.15 Dynamic factors ... 99
Table 4.16 Site importance factors .. 99
Table 4.17 Partial factors on soil properties .. 100
Table 4.18 Routine limits for allowable movements ... 103
Table 4.19 Allowable deflection, routine limits .. 105
Table 4.20 Equilibrium subgrade strengths, stiffness and capping thicknesses for typical construction conditions .. 107
Table 4.21 Capping thickness for different subgrade strengths and stiffness 108
Table 5.1 Responsibilities of procurement parties/stakeholders 113

Table 5.2 Partial factor on geocellular unit strength, factors to be considered 77
Table 5.3 Examples of partial factor on geocellular unit characteristic strength 78
Table 5.4 Unit weights of soils ... 80
Table 5.5 Critical state angle of friction, ϕ', for some sands and gravels; ϕ', rounded down to nearest degree .. 81
Table 5.6 Characteristic traffic loads for different site uses, permanent works 85
Table 5.7 Weight density of some construction materials 86
Table 5.8 Checklist for construction plant loading information 87
Table 5.9 Load factors for ultimate and serviceability limit state checks 99
Table 5.10 Dynamic factors ... 99
Table 5.11 Site importance factors .. 99
Table 5.12 Partial factors on soil properties .. 100
Table 5.13 Routine limits for allowable movements ... 103
Table 5.14 Allowable deflection, routine limits .. 105
Table 5.15 Equilibrium subgrade strengths, stiffness and capping thicknesses for typical construction conditions .. 107
Table 5.16 Capping thickness for different subgrade strengths and stiffness 108
Table 6.1 Responsibilities of procurement parties/stakeholders 113
Table 6.2 Documentation for design of geocellular system .. 116
Table 7.1 Geomembrane typical specification ... 119
Table 7.2 Geomembrane typical specification (ASTM) ... 119
Table 7.3 Protection fleece typical specification .. 120
Table 7.4 Infiltration geotextile typical specification ... 120
Table 8.1 Silt loading levels and potential loss of storage .. 131
Table 8.2 Recommended maintenance schedule ... 134
Glossary

Action
Forces (loads) applied to a structure.

Amorphous
A material with no regular crystalline structure. Such plastics exhibit a glass transition or softening point, but have no melting point. Polystyrene, polycarbonate and polyvinyl chloride (PVC) are examples of amorphous plastics.

Attenuation system
A system designed to control the peak flow from a given site by providing a facility for the temporary storage of stormwater.

Battering back
“The process of removing material around a trench or excavation such that the walls are sloped back at an angle rather than vertical.” (from BAC Australia, 2010).

Benkelman beam deflection survey
A static deflection method to determine the rebound deflection of a pavement under a standard wheel load and tyre pressure, with or without temperature measurements.

CAT SCAN
A tool that is used to locate buried utilities.

CAT II/CAT III
Independent checking categories according to HA (2012).

Catchpits
A chamber located at regular intervals along a piped drainage system. The catchpit has a sump that allows collection of sediment and foreign objects, which have entered the drainage system and also allows access to the pipework for survey and maintenance works.

Characteristic load
The expected (representative) loads to be supported by a structure.

Characteristic strength
The strength at the given design life derived from creep rupture tests. This is a cautious estimate of strength derived from a suite of creep rupture tests minus two standard deviations. If specialist tests are carried out, then the cautious estimate of strength may be modified as outlined in Section 4.2.1.

Creep
Increase in deformation over time under a constant applied load.

Creep rupture
The failure to hold a load over time. In a creep-rupture test failure is defined as either rupture of the unit, an increase in the rate of displacement (when plotted on a graph of log displacement against log time) or when displacement has reached an equivalent of six per cent strain.

Design load
The characteristic load multiplied by the appropriate partial factors of safety relevant to the limit state being considered.

Design strength
The characteristic strength modified by the appropriate material partial factor.

Differential scanning calorimeter (DSC)
A thermal analysis instrument frequently used for the melting point determination of plastics. It also yields the energy of a melting process, which can be used to assess the level of crystallinity in a plastic (see Level of crystallinity).

Forebay
A small basin or pond upstream (or at the upstream end) of the main drainage component, with the function of trapping sediment.

Geocellular tank
This comprises a number of geocellular units joined together to form a tank that performs the required design function, eg soakaway.

Geocellular unit
Plastic structure used to form geocellular tanks, upon which load testing is undertaken to determine design strength.

Geocellular unit installation
See Geocellular tank.
Abbreviations and acronyms

CAT Cable avoidance tool
CBR California Bearing Ratio
CCTV Closed-circuit television
CDM Construction (Design and Management)
CEN European Committee for Standardisation
CF Clay fraction
CSWIP Certificate Scheme for Welding and Inspection Personnel
DSC Differential scanning calorimeter
EA Environment Agency
EC0 Eurocode 0 (BS EN 1990)
EC7 Eurocode 7 (BS EN 1997-1 and BS EN 1997-2)
HE Highways England
HGV Heavy goods vehicle
HSE Health and Safety Executive
GC Geotechnical Categories (Eurocode 7)
GI Ground investigation
IGS International Geotextile Society
RoGEP UK Register of Ground Engineering Professionals
SLS Serviceability limit state
SSSI Sites of Special Scientific Interest
SuDS Sustainable drainage systems
TSS Total suspended soils
UDL Uniformed distributed loads
ULS Ultimate limit state
1 Introduction

1.1 BACKGROUND

1.1.1 Scope for new guidance

In the mid-1980s plastic honeycomb structures (known as geocellular units) were first used for stormwater storage in mainland Europe, below permeable pavements. Their use became more widespread in the early 1990s and in the late 1990s honeycomb attenuation structures were introduced into the UK.

During the last 15 years, there has been a rapid increase in the number and different types of geocellular units available and they are now widely used for attenuation, storage and infiltration in stormwater drainage systems. They can also be used for other uses such as gas venting and drainage. Geocellular units can be considered to be a versatile void former, as the nature of the material (eg geotextile, geomembrane) used to wrap around the unit will dictate its functionality.

Despite this widespread use, consultants and contractors tend to rely on manufacturers to provide structural design and construction advice. Guidance by Wilson (2008) was a considerable step forward, and for the first time provided a single source of design guidance.

Following the work by Wilson (2008), there have been further developments including:

- understanding of geocellular unit behaviour
- guidance documents that have been published in other countries
- lessons learnt from project experience.

In recent years the scale and complexity of geocellular unit installations has significantly increased, eg depths in excess of three metres, and located adjacent to or beneath heavily trafficked highways. Many installations are now significant structural engineering designs with potentially severe consequences if failure occurs. So, the level of rigour in analysis, testing, design and construction needs to be commensurate with the specific application, and in some cases should be similar to or in excess of that given to, for example, an underground basement for a building.

Based on these developments, this new publication aims to provide guidance on:

- design management, appropriate competency and communication framework for the parties involved
- installation classification to allow the appropriate design and construction management effort for each project to be determined
- appropriate test methods to assess the reference strength and structural performance of the units over their design life
- different analytical methods, and the relevant material factors and load factors to ensure design is consistent with Eurocode requirements
- procurement of geocellular units
- construction methods and supervision
- long-term maintenance.

This guide provides information on geotechnical and structural behaviour. It does not cover other design issues such as hydraulic performance, for which the reader should refer to Woods Ballard et al (2007) and British Water (2005).
1.1.2 SUDS development and attenuation/infiltration tanks

With continuing urbanisation, climate change and intensified rainfall, Britain's surface water drainage infrastructure is becoming increasingly strained. This is causing more frequent and more severe flooding across the country.

To help combat this, sustainable drainage systems (SuDS) have been developed as a sustainable design philosophy for surface water drainage. The aim of SuDS is to mimic, as closely as possible, the natural drainage of a site before development and to minimise the impacts of the development on surface water flows and infiltration.

As an important part of the SuDS philosophy, infiltration or attenuation systems form a very attractive option to store rainwater until the receiving system can accommodate it. Infiltration techniques, such as soakaways as shown in Figure 1.1, discharge runoff directly into the ground using geocellular units. However, drainage by infiltration requires sufficiently permeable soil conditions and low peak groundwater table. Often it is not a practicable solution, particularly in urban areas. In terms of the attenuation technique in geocellular units (see Figure 1.2) rainwater is allowed to back-up behind a flow control device, which limits the peak discharge rate.

Woods Ballard et al (2007) gives more details about how to design infiltration or attenuation systems.

![Figure 1.1 Example of infiltration system](image1.png)

![Figure 1.2 Example of attenuation systems](image2.png)
1.2 GEOCELLULAR UNITS AND DESIGN PRACTICE

Modular plastic geocellular units are commonly used for providing stormwater infiltration and attenuation tanks for new developments (Figure 1.3). Geocellular tanks are usually constructed using modular units that are cuboid plastic structures with a high void ratio and porosity (both typically in excess of 90 per cent). The individual units or boxes are placed together to form a large tank surrounded by either an impermeable geomembrane or a permeable geotextile, or a combination of both.

Frequently engineers, architects and clients have been of the view that as the geocellular units are part of the drainage system, only drainage and overall hydraulic performance considerations are important. There has been an over-reliance on manufacturers’ information regarding the load carrying capacity of geocellular units and perhaps little understanding among design engineers of the types, validity and implications of the load testing undertaken. The implications of incorrect application and/or installation are not always fully understood.

It is important to realise that geocellular modular units should be considered as geotechnical structures from a design point of view because they act as pseudo-retaining structures and support earthworks materials. These installations are structures and should be designed by competent engineers using sound structural and geotechnical principles. They can be subject to significant loads when adjacent to existing structures and/or roads that can increase earth pressures on the units. They are vulnerable to becoming damaged during construction activities if site control is poor.

An understanding of the long-term deformation and load-carrying capabilities of the units over their required design life is needed. Reliable site-specific data needs to be obtained and appropriate analyses are required to ensure that installations do not collapse or move excessively under the imposed loads.

Geocellular units are not all the same. There are various types of box units that have different structural characteristics and load carrying capability. Load testing and design calculations should take account of these differences. As illustrated in Figure 1.3 a geocellular tank is composed of many geocellular units. For the purposes of this guide, a geocellular unit is defined as the plastic box that is load tested, ie it is the basic building block used to construct geocellular tanks. It is also important that
whoever is designing these systems has an understanding of the overall site development and envisaged construction activities. This will inform the design process and facilitate project risk management.

1.3 PROJECT EXPERIENCE

There have been failures of modular geocellular units (Figure 1.4) both in the UK and elsewhere (Wendebourg, 2006, and Paul and Wieland, 2006). However, from the available evidence, none have been because of intrinsic problems with geocellular units or tanks, and the number of failures in relation to the number of completed installations is small.

The main contributing factors to most failures are:

- Inadequate information for designers and little appreciation of the importance of an appropriate structural and geotechnical design.
- Inadequate design, often not taking account of particular ground conditions on a site, or not allowing for long-term deformation of the units.
- Lack of understanding of the structural performance of the units. This can lead to overloading by, for example, running heavy plant across units that were not designed to carry such loads or using plant such as cranes adjacent to units (Figure 1.5), or by using unsuitable backfill containing, for example, boulders or soft clay.
- Lack of appreciation of the influence of groundwater levels or the effect of surface water flows into excavations during construction.
- Inappropriate laboratory testing that overestimates the strength of the units.
- Use of units not in accordance with the manufacturers' limitations, eg placing them too deep.
- Detailing errors and late on-site changes by contractors, eg changing pavement layers, spanning the units over channels or changing the type of unit.

Figure 1.4 Example of the consequences of failure of a modular geocellular tank after three years
1.4 THE IMPORTANCE OF APPROPRIATE STRUCTURAL DESIGN

 Apart from the obvious health and safety implications of a collapse and the cost of replacing a tank, there are other implications that should be considered:

- The cost of replacing overlying construction such as car parks and the resulting costs due to loss of use can be far more than the cost of replacing the tank.
- The reputation of the designers and/or suppliers and relationships with clients will be damaged.
- The acceptance by the industry of modular plastic geocellular units for such use will be undermined.

The consequences of tank collapse can be far reaching and appropriate structural design should be a high priority for clients, consultants and suppliers, in the same way that it is for other underground structures (see Figure 1.6).
1.5 CONCEPT OF GEOCELLULAR TANK CLASSIFICATION

There are many geocellular units available in the UK (see Chapter 2). Different tank installation configurations and layouts can lead to different structural behaviours, depending on the unit type, site location, construction factors and predominant loading direction. So it is necessary to understand the fundamental properties of each type of unit and the tank assembly in the context of the applied loads, and site-specific ground conditions.

In order to achieve this, a system of classification is proposed in this guide for geocellular tank installations (see Chapter 3). Eurocode 7 (EC7) defines three Geotechnical Categories (GC) that may be used to establish geotechnical design requirements. The basic EC7 approach has been developed, to provide specific classification criteria for geocellular systems.

The classification system will allow the parties involved, ie the client, designer and manufacturer, to understand the degree of complexity of the project. It will also define the appropriate level of checking and structural and geotechnical competence needed to ensure safe and efficient design.

It is important that a competent engineer is appointed to oversee the design and construction of the geocellular tanks. In particular to categorise the design and develop solutions with respect to the specific application, site and ground conditions, design requirements and criteria, risk allocation and assessing the consequences of non-performance of the installation. The tanks interact with the ground, so the responsible engineer needs to be experienced in ground engineering.

1.6 DESIGN MANAGEMENT

Design responsibility must be clear. However, at present there is often unclear design responsibility between the client, overall scheme designer and geocellular manufacturer. Geocellular units may not be specified properly and the main contractor can often source supplies independently without having clear criteria.

Design of installations constructed using modular geocellular units should:

- Define the design and communication responsibilities between the appointed parties, ie client, designer, contractor and unit manufacturer. This can be done in accordance with the Construction (Design and Management) Regulations 2015 (CDM2015).
- Take account of overall site topography and potentially adverse effects of nearby structures/earthworks, vegetation (eg retaining walls, slopes, temporary, permanent or future planned works).
- Take account of site history and geology (eg ground/groundwater contamination, historic landslips, or mining).
- Consider the soil-structure interaction and all applied (both vertical and lateral) loads, including accidental and construction loading.
- Take account of construction sequencing, both for the actual geocellular tank installation and the surrounding works.
- Be based on appropriate laboratory tests, testing duration in-line with design life taking account of creep and creep rupture (see Glossary) of the plastic units.
- Use appropriate partial factors for material and ground strength, and load factors.
- Analyse all appropriate limit states (deformation/failure modes), in particular consider serviceability deflections due to long-term deformation (ie creep) of the plastic units and the tanks.

The design requirements for a safe and serviceable unit installation are summarised in Figure 1.7. The design methodology is considered in detail in Chapter 5.
1.7 INTERIM GUIDANCE

At the time of writing (2014) there are various standards that are under development relating to the testing procedures (short- and long-term testing) for geocellular units. As with all CIRIA publications, this provides guidance on good practice. The information given here, such as testing requirements, are consistent with those in the standards under development and are not necessarily the testing procedures currently employed.

So, it should be recognised that there may not be the testing data available, which is consistent with the requirements of this guide for all geocellular units commercially available. In the absence of this data the manufacturers will need to give guidance to the designers on the long-term strength and deformation properties of the units, and designers will need to make an appropriate judgement on the design strength to use.

However, by September 2015, manufacturers should have complied with the testing requirements outlined within and be able to provide relevant load testing data for their geocellular units.
1.8 LAYOUT OF THE GUIDE

Throughout the guide there may be some terms that are unfamiliar to the reader. Where this is the case reference should be made to the glossary, which can be found within the prelims. The guide is structured as follows:

Chapter 1 provides some background information on the use of geocellular tanks and outlines the purpose of the guide and the need for new design guidance.

Chapter 2 provides an introduction to the types of geocellular unit available, as well as an introduction to the raw material (plastic) used in their construction, key lessons learnt from previous use and developments in international design codes. The structural behaviours of geocellular units and of geocellular tanks are described. The concept of ground-structure interaction is also introduced. It is recommended that this chapter is read and understood before the following chapters on load testing, design, construction and maintenance.

Chapter 3 outlines the new site classification methodology – its principal aim is to identify projects with high intrinsic complexity and/or where the consequences of failure are severe. The scoring system and details of the proforma to be used to classify the sites are also outlined.

Chapter 4 describes load testing of geocellular units. Testing requirements that are consistent with the requirements of the Eurocodes are outlined. Note this requires a change from current practice towards more long-term testing.

Chapter 5 details the methodology to be followed for the geotechnical and structural design of the geocellular units in accordance with the Eurocodes. Guidance is also given on issues such as pavement engineering when the geocellular units are to be incorporated within a pavement.

Chapter 6 provides guidance on the procurement of geocellular units.

Chapter 7 details some of the issues likely to arise during construction of geocellular tanks that may affect their performance. This chapter is of importance to the designer as well as the contractor, as the construction methodology can affect the design of the geocellular units, eg pressures due to compaction of backfill, loading due to temporary stockpiles of material adjacent to the tanks.

Chapter 8 provides an introduction to maintenance of geocellular tanks including recommendations for maintenance strategies.

Chapter 9 presents the conclusions of the guide and details areas where it is recommended further work and research are undertaken.

Appendix A1 contains the site classification proforma to be used for a geocellular tank, more details of which are found in Chapter 3.

Appendix A2 contains some worked examples to illustrate the design methodology outlined in Chapter 5.

This publication provides guidance on the following issues:

- **Design management**: to ensure there is proper co-ordination and allocation of responsibilities.
- **Classification system for geocellular unit installations**: this allows the complexity of a particular project to be determined, which in turn determines the appropriate level of checking and structural and geotechnical competence needed to ensure safe and efficient design.
- **Test methods to determine the strength of the geocellular units**: short-term compression tests should be used to determine the variability in strength of a unit only, and not for design strength. Design strengths are obtained from creep rupture tests, which allow an appropriate strength to be determined for the design life of the installation.
- **Specialist testing**: for more complex installations specialist testing, eg fatigue testing when cyclic loads are being applied, may be required and guidance for this is provided.
- **Code compliance**: the introduction of the Eurocodes is a significant change in UK practice and this guide outlines how to develop Eurocode compliant designs.
• **Analysis**: an overview of ground-structure interaction is provided. Methods of analysis and the design checks required are discussed and the relevant partial factors are outlined.

• **Procurement**: guidance on the procurement of geocellular units is provided.

• **Construction**: the need for good site control is emphasised. Good communication between all parties (geocellular unit supplier, designer, contractor, client) is very important.

• **Maintenance**: many units can be difficult to maintain, so greater effort is needed in hydraulically designing systems in order to reduce the risk of long-term siltation. Reducing uncontrolled runoff into tanks during construction is particularly important.

Of these, the two key areas are the introduction of the classification system and the change in testing practice of the units, and these are summarised in Chapter 9.
SITE CLASSIFICATION PROFORMA

Design and construction classification and check proforma

Proforma objectives and general notes
1. The PRINCIPLE AIM of the scoring system is to identify projects with high intrinsic complexity and/or where the consequences of failure are severe.
2. CIRIA C737 Chapter 3 Site classification methodology; should be studied before using the proforma.
3. Proforma provides the methodology to classify installations and recommend the appropriate level of expertise to oversee design and construction.
4. Proforma is user friendly to non-technical clients, highlighting basic checks/tasks and guides building professionals to basic design and construction considerations.
5. The methodology utilises the existing Construction Design Management Regulations 2015 (CDM2015), which provides the legal framework and duties for construction projects.
6. Can be used as auditable evidence that the design process, checks and duty of care obligations discharged.
7. The principal designer (CDM2015) will be tasked with the responsibility of ensuring the project proforma are utilised and signed off by the building professional(s) and countersigned by the principal designer. The client or principal designer may delegate this task to the installation designer to manage and ensure completion of the forms.
8. Methodology considers structural and geotechnical design and construction and NOT hydraulic design or performance or Environment Agency (EA) consents.
9. This Proforma pack is to be retained together so that all appointees are able to review the whole. The enclosed forms will be completed by the various parties.

CDM background: note that under CDM2015 the following legal duties apply.

Client (commercial)
- To appoint the principal designer and principal contractor, ensuring they have the skills, knowledge, experience and organisational capability.
- Provide pre-construction information.

Principal designer
- Identify, collect and pass on pre-construction information between the parties.
- Co-ordinate all aspects of the design work.
- Liaise with the principal contractor regarding ongoing design work.
- Facilitate good communication between the appointees.
- Prepare and update the Health and Safety File.

Definition of zones of influence:

Slopes or stockpiles beyond h +10 m are not considered to be of influence.
Foundations or loaded/trafficked pavements beyond h +2m are not considered to be of influence and considered to be remote*

NB: Pile supported structures: zone of influence should be taken as \(x + h \), where \(x = 5D \) for piles supporting vertical load only, \(x = 8D \) for piles supporting horizontal loads (\(D \) = pile diameter)

Excavation in front of retaining walls will need to take account of the passive zone supporting the wall. Angle \(P \) typically will vary from 55 to 65°.
\(\phi \) = the angle of shearing resistance of the soil.
The distance \(d \) is dependent on the depth of the wall and the soil strength. Excavations beyond \(d + h \) are considered remote*.

Notes on use of proforma
1. Each box in the following sections is awarded a score. All applicable boxes should be ticked, ie potentially more than one per section. The sum of the scores will determine the appropriate classification determined for the project assessed.
2. In general the greater the perceived risk the higher the score for the assessed element.
3. NB: Building Control Regulation specifies that a soakaway, domestic or otherwise, must be at least 5 m from any adjacent structure.

1. Type of site
 - Domestic single dwelling. (units less than 3 m³ capacity, project below notification requirements for CDM) Score = 0
 - Commercial application (CDM applies Part 3) Score = 10

2. Use
 - Soakaway Score = 5
 - Grey/rainwater storage Score = 10
 - Attenuation Score = 10
 - Other Score = 15

Specify ...
3. Pre design/construction information held

Information held by principal designer and distributed to the designer, supplier/manufacturer and principal contractor. Score = 0 for single domestic dwellings. Tick all boxes where info held. If any information missing Total score for this section = 35

<table>
<thead>
<tr>
<th>Information Held</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local knowledge/geological mapping</td>
<td></td>
</tr>
<tr>
<td>Basic ground investigation, confirmation of soil type</td>
<td></td>
</tr>
<tr>
<td>(window samples + TP)</td>
<td></td>
</tr>
<tr>
<td>Desk study</td>
<td></td>
</tr>
<tr>
<td>Services information/search</td>
<td></td>
</tr>
<tr>
<td>Ground water data/assessment</td>
<td></td>
</tr>
<tr>
<td>Overall site development plan</td>
<td></td>
</tr>
</tbody>
</table>

4. Topography/retaining walls/stockpiles/foundations (within zone of influence)

Adjacent to sloping existing ground, embankments or temporary stockpiles: Score = 30

Adjacent to existing or planned, structures retaining walls, piles or shallow foundations: Score = 60

Adjacent to level ground (defined as h + 10 m, see definition diagram): Score = 0

5. Installation development location and use

<table>
<thead>
<tr>
<th>Location and Use</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential garden (remote)</td>
<td>0</td>
</tr>
<tr>
<td>Pasture/woodland/parkland (remote) landscaping</td>
<td>0</td>
</tr>
<tr>
<td>Arable farmland (tractor/harvester access)</td>
<td>5</td>
</tr>
<tr>
<td>Residential driveway/play areas/sports field</td>
<td>5</td>
</tr>
<tr>
<td>Car park (light use with height access restrictions)</td>
<td>15</td>
</tr>
<tr>
<td>Car park general (no height access restrictions)</td>
<td>20</td>
</tr>
<tr>
<td>HGV parks/low speed roads, installation within zone of influence</td>
<td>30</td>
</tr>
<tr>
<td>Full highway loading installation within zone of influence</td>
<td>80</td>
</tr>
<tr>
<td>Railway loading installation within zone of influence</td>
<td>110</td>
</tr>
</tbody>
</table>

6. Depth of installation

<table>
<thead>
<tr>
<th>Depth of Installation</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1.0 m to base</td>
<td>0</td>
</tr>
<tr>
<td>Cover less than 1.0 m and trafficked</td>
<td>25</td>
</tr>
<tr>
<td>Between 1.0 and 3.0 m to base</td>
<td>5</td>
</tr>
<tr>
<td>Cover greater than 1.0 m and trafficked</td>
<td>15</td>
</tr>
<tr>
<td>Greater than 3.0 m to base</td>
<td>20</td>
</tr>
<tr>
<td>Cover to units 0.3 m to 2.0 m landscaped</td>
<td>10</td>
</tr>
<tr>
<td>Cover greater than 2.0 m</td>
<td></td>
</tr>
</tbody>
</table>

7. Construction phase (temporary works, TW)

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW stockpile/plant stored within zone of influences</td>
<td>25</td>
</tr>
<tr>
<td>High ground water likely within excavation</td>
<td>20</td>
</tr>
<tr>
<td>TW access/construction plant tracking over installation (excluding plant used in construction of the actual tank)</td>
<td>20</td>
</tr>
<tr>
<td>Plant/materials exclusion zone implemented within zone of influence</td>
<td>0</td>
</tr>
<tr>
<td>Use of mobile or tower cranes within zone of influence</td>
<td>30</td>
</tr>
<tr>
<td>No provision for ground/rainwater removal, ie pumped sump</td>
<td>15</td>
</tr>
</tbody>
</table>

Assessment total score